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The Modeling of Bistatic-Scattering With Moving Platforms

Abstract

The complex frequency response of the ocean is derived for three different bistatic scattering
problems. The derivations are based on treating the speed of sound and ambient density of the
ocean as constants, and solving for the direct ray path between transmitter and discrete point
scatterer, and from discrete point scatterer to receiver. The bistatic scattering problems considered
are: 1) no motion, 2) only the discrete point scatterer is in motion, and 3) all three platforms (the
transmitter, discrete point scatterer, and receiver) are in motion. The first bistatic scattering problem
yields a time-invariant, space-variant complex frequency response while the remaining two bistatic
scattering problems yield time-variant, space-variant complex frequency responses. For problems
involving motion, the exact time-varying ranges between the transmitter and discrete point scatterer,
and between the discrete point scatterer and receiver are derived, and the exact time-varying angles
of incidence at the discrete point scatterer, and the exact time-varying angles of scatter at the receiver
are also derived. The solutions for the exact time-varying ranges are also valid in an inhomogeneous
ocean where the speed of sound and ambient density are functions of position since solving for a
range represents a problem in mechanics not wave propagation.

1 Introduction

The main purpose of this report is to derive the complex frequency response of the ocean for
three different bistatic scattering problems. Since we will be working with small-amplitude acoustic
signals, a linear wave equation accurately describes the propagation of sound between source,
discrete point scatterer, and receiver. As a result, we treat the propagation of small-amplitude
acoustic signals in the ocean as transmission through a linear, time-variant, space-variant filter.
Treating the ocean medium as a linear filter is valid because we are trying to solve a linear wave
equation.

~ Scatter from a discrete point scatterer is modeled via the scattering function, which is a
complex function (magnitude and phase) and is, in general, a function of frequency, the direction of
wave propagation from the source to the scatterer, and the direction of wave propagation from the
scatterer to the receiver. In addition to the scattering function, frequency-dependent attenuation is
taken into account in order to model the propagation of sound from transmitter to discrete point
scatterer, and from discrete point scatterer to receiver. '

The speed of sound and ambient density of the ocean are treated as constants. Therefore,
sound rays will travel in straight lines. We will only concern ourselves with solving for the direct
ray path between transmitter and discrete point scatterer, and from discrete point scatterer to
receiver. As a result, the three platforms can be treated as being in an unbounded, homogeneous
ocean medium. Sound propagation between the transmitter and the ocean surface and bottom, and
from the ocean surface and bottom to the receiver can be handled in the same way as will be
developed for the discrete point scatterer.

Section 2.1 is devoted to the first bistatic scattering problem, which involves no motion - the
transmitter, discrete point scatterer, and receiver are not in motion. Most of Section 2.1 follows the
analysis presented in [1]. However, what is new in Section 2.1 is the derivation of the exact solution
for the angles of incidence at the discrete point scatterer and the angles of scatter at the receiver. An
example is worked out at the end of Section 2.1 showing how the general bistatic scattering results
reduce for a monostatic (backscatter) scattering geometry for the no motion case.

Section 2.2 is devoted to the second bistatic scattering problem when only the discrete point
scatterer is in motion. The initial analysis in Section 2.2 follows that presented in [2], with the
exception that motion is now allowed to start at an arbitrary time instant ¢, seconds as opposed to




zero seconds as was done in [2]. In addition, two new major results are presented in Section 2.2: 1)
the exact time-varying ranges between the transmitter and discrete point scatterer, and between the
discrete point scatterer and receiver are derived, and 2) the exact time-varying angles of incidence at
the discrete point scatterer, and the exact time-varying angles of scatter at the receiver are also
derived. An example is worked out at the end of Section 2.2 showing how the general bistatic
scattering results reduce for a monostatic (backscatter) scattering geometry for the case when only
the discrete point scatterer is in motion.

Section 2.3 is devoted to the third bistatic scattering problem when all three platforms are in
motion. The initial analysis in Section 2.3 follows that presented in [3], with the exception that
motion is now allowed to start at an arbitrary time instant z,, seconds as opposed to zero seconds as

was done in [3]. In addition, two new major results are presented in Section 2.3: 1) the exact time-
varying ranges between the transmitter and discrete point scatterer, and between the discrete point
scatterer and receiver are derived, and 2) the exact time-varying angles of incidence at the discrete
point scatterer, and the exact time-varying angles of scatter at the receiver are also derived. Three
examples are worked out at the end of Section 2.3. The first example shows that the exact results
derived in Section 2.3 reduce to the exact results derived in Sections 2.1 and 2.2 when appropriate
values are used for the various parameters. This is a very important example because it validates the
correctness of the general solution derived in Section 2.3. The second example shows how the
general bistatic scattering results reduce for a monostatic (backscatter) scattering geometry for the
case when all three platforms are in motion. The third example shows how the general bistatic
scattering results can be applied to a synthetic aperture sonar (SAS) system trying to image a
nonmoving target on the ocean bottom without having to make several simplifying assumptions as
is done, for example, in [8]. ,

Finally, note that for problems involving motion, the solutions for the exact time-varying
ranges between the transmitter and discrete point scatterer, and between the discrete point scatterer

and receiver derived in this report are also valid in an inhomogeneous ocean where the speed of

sound and ambient density are functions of position since solving for a range represents a problem
in mechanics not wave propagation. However, travel times and angles of incidence and scatter are
different in an inhomogeneous ocean compared to a homogeneous ocean because of the
complicated trajectories of sound rays in an inhomogeneous ocean.

2  Bistatic Scattering
2.1 No Motion

In this section we will analyze the simple bistatic scattering problem shown in Fig. 2.1-1. The
transmitter, discrete point scatterer, and receiver are not in motion. No motion corresponds to a
time-invariant problem. As mentioned in the Introduction, the three platforms will be treated as
being in an unbounded, homogeneous ocean medium. Although the propagation of sound between
the source and discrete point scatterer, and between the discrete point scatterer and receiver can be
treated as transmission through linear, time-invariant, space-invariant filters; the overall solution
for this bistatic scattering problem corresponds to transmission through a linear, time-invariant,
space-variant filter. The presence of a discrete point scatterer in an unbounded, homogeneous fluid
medium (i.e., a fluid medium with constant speed of sound and ambient density) causes the medium
to be space-variant.

Let the source distribution x,,(z,r) at time ¢ and position r = (x,y,z) be a motionless, time-
harmonic, point source with units of inverse seconds, that is, let

x,,(t,r) = §,8(r —x,)exp(+j2mft), 2.1-1)



Figure 2.1-1. Bistatic scattering geometry. Point 0, Py(r,), is the transmitter; point 1, B(r,), is

the discrete point scatterer; and point 2, B(r,), is the receiver. None of the platforms are in
motion.




where S, is the source strength in cubic meters per second, the impulse function J(r—-ry), with
units of inverse cubic meters, represents a point source at r, = (x,,¥,,2,), and f is frequency in
hertz. The sound source has been turned on forever, that is, since t=—c. The propagation of
sound between the source and discrete point scatterer can be modeled as transmission through a
linear, time-invariant, space-invariant, filter. Therefore, the acoustic field (velocity potential)
incident upon the discrete point scatterer at r, = (x,,y,,2;) is given by [4]

Yu(tn) =y, (1) exp(+ 27 f1), (2.1-2)
where

V@) =S Hy(f.r— 1), (2.1-3)

exp(-—jk|rl —-rol)
47r, - x|

H,(fr-r)=- (2.1-4)

is the time-invariant, space-invariant, complex frequency response of the ocean at frequency f
hertz,

k=2nflc=2m/A (2.1-5)
is the wavenumber with units of radians per meter, ¢ is the constant speed of sound of the
homogeneous ocean medium in meters per second, and A is the wavelength in meters.

As can be seen from Fig. 2.1-1, the position vector from the point source to the discrete pomt
scatterer is given by

Iy, =L -, (2.1-6)

Therefore, (2.1-3) and (2.1-4) can be rewritten as

V(@) =S Hy (forg,) (2.1-7)
and
exp|—jkir,
H,(f,xy,)=— —(M (2.1-8)
47r|r0'l|
respectively.

In order to compute the acoustic signal incident upon the receiver, we treat the discrete point
scatterer as another motionless, time-harmonic, point source with units of inverse seconds, that is,
let [see (2.1-1) and Fig. 2.1-2]

Xy, (t,1) = §;6(r — 1)) exp(+ 27 ft), (2.1-9)

where S is the source strength in cubic meters per second, and the impulse function &(r-r,),
with units of inverse cubic meters, represents a point source at r, = (x,,¥,,z,). The source strength
S, is given by



S0(r-rn)

S,0(r—ry)

yf,M(rZ)

Figure 2.1-2. Bistatic scattering geometry. Both the transmitter at point 0, Fy(r,), and the

discrete point scatterer at point 1, B(r;), are time-harmonic point sources. None of the platforms
are in motion.



So = Y@ frg o1 5) (2.1-10) .

where y, , (1) is given by (2.1-3) and is the spatial-dependent part of the time-harmonic velocity

potential at r; with units of squared-meters per second, gl( fs ﬁo_,,ﬁlvz) is the scattering function of

the discrete point scatterer with units of meters, and #,, and 7, , are the dimensionless unit vectors

in the directions measured from the source to the discrete point scatterer, and from the discrete point
scatterer to the receiver, respectively. The unit of meters for the scattering function represents an
effective scattering length that may be larger or smaller than the actual length of the scatterer. The
scattering function is a complex function (magnitude and phase) and is, in general, a function of
frequency, the direction of wave propagation from the source to the scatterer (7,,), and the direction
of wave propagation from the scatterer to the receiver (7, ,) (see either Fig. 2.1-1 or Fig. 2.1-2) [5].
Later in this section, we will show how to express the scattering function as not only a function of
frequency, but also as a function of the angles of incidence and scatter instead of unit vectors. The
use of unit vectors is meant as a shorthand notation. :

The propagation of sound between the discrete point scatterer and receiver can also be
modeled as transmission through a linear, time-invariant, space-invariant filter. Therefore, the
acoustic field (velocity potential) incident upon the receiver at r, = (x,,y,,z,) due to a point source

at r, =(x,,y,,z,) is given by [4]
Yu(5) =y, 4, (r,)exp(+j2nft), (2.1-11)
where
Yrm() =S Hy(f.r,—1) (2.1-12)

and

exp(—jklrz—rl[)
4nle,-n|

H, (fr,-r)=- (2.1-13)

As can be seen from either Fig. 2.1-1 or Fig. 2.1-2, the position vector from the discrete point
scatterer to the receiver is given by

r,=r,—I. (2.1-14)

Therefore, (2.1-12) and (2.1-13) can be rewritten as

Yrn(6)=SgHy,(f.r,) (2.1-15)
and
exp{—Jjk|r
Hy,(f.r,)=- —(—I’-z—l—) (2.1-16)
47z|rl'2|
respectively.



Let us now begin the process of obtaining a final expression for the time-harmonic velocity
potential incident upon the receiver. Substituting (2.1-10) and (2.1-7) into (2.1-15) yields

Yru(D)= SOHM(f’rO.l)gl( f’ﬁo,l’ﬁl.Z)HM(f’rl,Z)’ (2.1-17)

or, equivalently,

V(@) = SoHy( £o1315,), (2.1-18)
where
HM(f’rZ |vr0) = HM(f9r0,l)gl(f’ﬁo,l’ﬁl.2)HM(f’rl.2')

exp[—jk(lro,1| + ‘rmm
1677:2|l'0,1“r1.2l

= g,( foAouohs) (2.1-19)

exp[~—jk(|rl — x|+ |, - rl|)]
167%|r, - ry||r, — x|

= gl(f’ﬁo,l’ﬁll)

Note that if the bistatic scattering i)roblem shown in Fig. 2.1-1 corresponded to transmission
through a space-invariant filter, then the complex frequency response given by (2.1-19) would be a
function of the vector spatial difference r, — r, which it is not. Also note that in order to model the

effects of frequency-dependent attenuation, simply replace the real wavenumber k given by (2.1-5)
with the following complex wavenumber K :

K=k-ja(f), ‘ (2.1-20)

where a(f) is the real, frequency-dependent, attenuation coefficient in nepers per meter. In
addition to being real quantities, both £ and a( f) are positive.

With the use of (2.1-5), (2.1-11), (2.1-18), and (2.1-19); and by replacing the real
wavenumber k in (2.1-19) with the complex wavenumber K given by (2.1-20), we can summarize
our results as follows: for the bistatic scattering problem shown in Fig. 2.1-1, the time-harmonic
velocity potential in squared-meters per second incident upon the receiver at r, = (x,,Y,,2,), due to
a time-harmonic point source at ¥, = (x,,,,Z,) and a discrete point scatterer at 1, =(x;,¥,,2), is
given by

Yu(t.r) =Sy Hy( f.0, |x, Jexp(+j2nfr), 127, (2.1-21)

where S, is the source strength in cubic meters per second,

exp[— a(f)(ry, tr, )]

2
167°ry, 1y,

HM(f’r_z |ro) = gl(f’ﬁo.l’ﬁl,z)

exp(—j27fT) (2.1-22)




is the time-invariant, space-variant, complex frequency response of the ocean at frequency f hertz,
gl( fiy, ,fzm) is the scattering function of the discrete point scatterer in meters [see (2.1-46)],

fig, = k= BT (2.1-23)
: ’r0,| lrx rol
and
=2 = BN (2.1-24)
l'12| |r, — x|

are the dimensionless unit vectors in the directions measured from the source to the discrete point
scatterer, and from the discrete point scatteret to the receiver, respectlvely, o(f) is the real,
frequency-dependent, attenuation coefficient in nepers per meter,

Toathoa
=2 b2 2.1-25
C ( )

is the time delay in seconds (the amount of time it takes for the transmitted acoustic signal to begin
to appear at the receiver), and

Ty = |r0_1| =|r - , (2.1-26)
and
ra=[r|=In-x| (2.1-27)
are the distances (ranges) in meters measured from the source to the discrete point scatterer, and
from the discrete point scatterer to the receiver, respectively.
Equations (2.1-23) and (2.1-24) represent one way to compute the unit vectors 7, and 7,,.

Unit vectors can also be computed using direction cosines. For example, the dimensionless unit
vector 7i,, can also be expressed as follows:

o = Ug X +v, Y + W, 2, (2.1-28)
where
Uy, = sin6y, cosy,, (2.1-29)
Vo, = sinf,, siny |, (2.1-30)
and
W, =€0s0;, (2.1-31)



are dimensionless direction cosines with respect to the X, Y, and Z axes, respectively, and 6, and
V,, are spherical angles defined in Fig. 2.1-3. Equating (2.1-23) and (2.1-28) yields

and

Uy = Ir’ rol ) (2.1-32)
=Y -
Vo= lrl rol ) (2.1-33)
_47% 1.
Wo, = Il'l— r0|. (2.1-34)

. Therefore, with the use of (2.1-29) through (2.1-31), and (2.1-32) through (2.1-34), the spherical
angles 6, and ¥, can be computed as follows:

and

_ 45—z
6y, =cos™ wy, = cos ‘( |r‘1 — r:|) (2.1-35)
Yo, = tan“'(l@—) = tan’l(u) : (2.1-36)
Uy, X1~ %o

Equations (2.1-35) and (2.1-36) are the angles of incidence at the discrete point scatterer.

where

and

Similarly, the dimensionless unit vector 7,, can also be expressed as follows:

a= U X+, 5+ w2, (2.1-37)
w,=sinb,,cosy,, (2.1-38)
v,,=siné,siny,,, (2.1-39)

w,,=cos0,, (2.1-40)

are dimensionless direction cosines with respect to the X, Y, and Z axes, respectively, and 6,, and
¥, , are spherical angles defined in Fig. 2.1-4. Equating (2.1-24) and (2.1-37) yields




Figure 2.1-3. The dimensionless unit vector 7, measured in the direction from the source to the
discrete point scatterer, and associated spherical angles 6,, and .
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A
n,

Figure 2.1-4. The dimensionless unit vector 7, , measured in the direction from the discrete point
scatterer to the receiver, and associated spherical angles 6,, and v/, ,.
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and

Therefore, with the use of (2.1-38) throug

X, X,
= , (2.1-41)
W, |r2 rll
_Y2= 0 -
Vi2 Irz rll ) (2.1-42)
_573 : )
W, = ll'z—l'1|. (2.1-43)

h (2.1-40), and (2.1-41) through (2.1-43), the spherical

angles 6,, and ¥, can be computed as follows:

and

6,,=cos™ w,,= cos”‘(ﬂ) (2.1-44)
[,

W= tan"[v‘—’z] = tan"(—y—z_—y’). (2.1-45)
U, X=X

Equations (2.1-44) and (2.1-45) are the angles of scatter at the receiver.
The result of the above analysis is that the scattering function can also be expressed as a

function of two sets of angles — the angles

of incidence (6,,,¥,,) given by (2.1-35) and (2.1-36),

and the angles of scatter (6,,,¥,,) given by (2.1-44) and (2.1-45). Therefore,

gl( f’ﬁo,l’ﬁl,Z) = gl( f’GO,I’WO.I’GI,Z’Wl.Z)‘

(2.1-46)

Let us next relate the scattering function, the differential scattering cross section, and target

strength of the discrete point scatterer. The

target strength (TS) is defined as follows [6]:

TS 2 1010g10|i

O'd(fsno,pnn,z)

ref

}dB reA., (2.1-47)

where [5, 6]

12




' 2
2 A A
N ~ A 4. rlzlav (1‘2) |gl(f’n0.l’n1,2)|
ol f,n,,n,)= lim | —=% = 2.1-48
A Fuia) ﬁ{ T, () } @4ny @149
is the differential scattering cross section with units of squared meters, ,, (r;)and I, (r,) are the

time-average, incident and scattered intensities, respectively, with units of watts per squared meter,
gl( fs ﬁo'l,ﬁl'z) is the scattering function of the discrete point scatterer with units of meters, and A_;
i$ a reference cross-sectional area commonly chosen to be equal to 1 m?.

Example 2.1-1 Monostatic Scattering Geometry

For a monostatic (backscatter) scattering geometry, both the transmitter and receiver are
located at the same position, that is,

r,=r,. o (2.1-49)
Substituting (2.1-49) into (2.1-14) yields
I, ==Tos (2.1-50)
where r, is given by (2.1-6). Therefore,
Fa= T, - . (2.1-51)
and
fiy = ~Ty,. (2.1-52)

With the use of (2.1-51) and (2.1-52), the time-invariant, space-variant, complex frequency
response of the ocean given by (2.1-22) reduces to

exe{-2a(/)r, ]

Gy exp(~j2mf1), (2.1-53)
0.1

HM(f’r2 Iro)= gn(f’ﬁo,v_ﬁo.l)

where

gl(fvﬁo,n—ﬁo.l) = g‘l(f’eo.l’WO,l’n_e().l’ﬂ + Wo,l)’ (2.1-54)

(6,;,¥,,) are the angles of incidence given by (2.1-35) and (2.1-36), 6,,=7-6,, and
V,,= T+, are the angles of scatter,

(2.1-55)

is the time delay in seconds, and r,, is given by (2.1-26).

13




2.2 Discrete Point Scatterer In Motion

In this section we will analyze the bistatic scattering problem shown in Fig. 2.2-1. The
transmitter and receiver are not in motion. Only the discrete point scatterer is in motion. Motion
corresponds to a time-variant problem. As mentioned in the Introduction, the three platforms will
be treated as being in an unbounded, homogeneous ocean medium. Although the propagation of
sound between the source and discrete point scatterer, and between the discrete point scatterer and
receiver can be treated as transmission through linear, time-variant, space-invariant filters; the
overall solution for this bistatic scattering problem corresponds to transmission through a linear,
time-variant, space-variant filter. The presence of a discrete point scatterer in an unbounded,
homogeneous fluid medium (i.e., a fluid medium with constant speed of sound and ambient
density) causes the medium to be space-variant.

Let the source distribution x,,(z,r) at time 7 and position r = (x,y,z) be a motionless, time-
harmonic, point source with units of inverse seconds, that is, let

Xy (t,1) = S, 6(r — x,)exp(+j27 f1), (2.2-1)

where S, is the source strength in cubic meters per second, the impulse function 8(r-r,), with
units of inverse cubic meters, represents a point source at r, = (x,,,,2,), and f is frequency in
hertz. The sound source has been turned on forever, that is, since ¢ = —oo. The velocity vector of the
discrete point scatterer, V,, is given by

V, =V, (2.2-2)

where V] is the speed in meters per second and ﬁv, is the dimensionless unit vector in the direction
of V,. The velocity vector given by (2.2-2) is constant, that is, both the speed and direction are
constants - there is no acceleration. Motion begins at time 7=, seconds. We will model the
propagation of sound from the time motion begins.
Since the discrete point scatterer is now in motion, the position vector from the origin to the
discrete point scatterer, denoted by &, (), is a function of time given by
R (=1 +AtV, t2t,, (2.2-3)
where 1, = (x,,,,z,) is the position vector from the origin to the discrete point scatterer when
motion begins (see Fig. 2.2-1), and
At=t~1t , t2t,. (2.2-4)
Note that &,(z,) =r,.
When the transmitted acoustic field is first incident upon the discrete point scatterer at some

time ¢* seconds where ¢’ > 1, , the position vector from the origin to the discrete point scatterer is
given by [see (2.2-3) and Fig. 2.2-2]

/=2, )=r+ArV, >t (2.2-5)

where

At'=t-1, >t . (2.2-6)

m
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Figure 2.2-1. Bistatic scattering geometry when motion begins at time ¢=t, seconds. Point 0,
Fy(r,), is the transmitter; point 1, A(r,), is the discrete point scatterer; and point 2, B,(r,), is the
receiver. Only the discrete point scatterer is in motion.
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Sp0(r—ry)

Figure 2.2-2. Bistatic scattering geometry when the transmitted acoustic field is first incident
upon the discrete point scatterer at time ¢’ seconds. Point 0, Fy(r,), is the transmitter; point 1,

F(r,), is the discrete point scatterer; and point 2, P,(r,), is the receiver. Only the discrete point
scatterer is in motion.
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The propagation of sound between the source and discrete point scatterer can be modeled as
transmission through a linear, time-variant, space-invariant filter. Therefore, the acoustic field
(velocity potential) incident upon the discrete point scatterer at time #* and position 1, = (x{,¥;,2/ )
is given by [7]

Yl 5= S, Hy, (¢, — 1, | fexp(+j2zft’), ' >1,, (2.2-7)

where

cxp(— jklrl'— rol)
47|r - x|

Hy (' -5, |f)=- (2.2-8)

is the time-variant, space-invariant, complex frequency response of the ocean at frequency f hertz,
and k is the wavenumber in radians per meter given by (2.1-5) and is repeated below for

convenience:
k=2nflc=2n/A. (2.1-5)

By referring to Fig. 2.2-2, we can express the position vector from the point source to the
discrete point scatterer at time ¢’ as

o, =T — I (2.2-9)
and upori substituting (2.2-5) into (2.2-9), we obtain

Xo, = 1o, g, = To, + ALV, (2.2-10)

where 7,= |r0,| fiy, is the dimensionless unit vector in the direction of r, r,, is given by (2.1-6)
and is repeated below for convenience (also see Fig. 2.2-2),

o =T~ X (2.1-6)

and At’ is given by (2.2-6). Therefore, (2.2-7) and (2.2-8) can be rewritten as -

)exp(+ rfry, >t 2.2-11)

m

yu (&)= S,H, (t,’r(’).l

and

l) . (2.2-12)

)= _exp(— jk|rg.

H, (t’, ry,

In order to compute the acoustic signal incident upon the receiver, we treat the discrete point
scatterer at time ¢> ¢ > ¢, and position r; as another motionless, time-harmonic, point source with
units of inverse seconds, that is, let [see (2.2-1) and Fig. 2.2-2]

X, (1,1) = S;8(x — ¥/ Yexp(+j27f1), (2.2-13)
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where S, is the source strength in cubic meters per second and the impulse function 6(r—ry),

with units of inverse cubic meters, represents a point source at r; = (x/,;,2; ). The source strength
S, is given by

S0 =5 HM(I”r(’),l f)gl( f’;i(,).l’ﬁl,l)’ (2.2-14)

where g,( £ ﬁéy,,ﬁl"z) is the scattering function of the discrete point scatterer with units of meters as
discussed in Section 2.1. Since the discrete point scatterer is now in motion and the transmitted
acoustic field is first incident upon the discrete point scatterer at time t’, the direction of wave
propagation from the source to the scatterer is given by the dimensionless unit vector 7, (see Fig.
2.2-2). Similarly, since the discrete point scatterer is being treated as another point source at time ¢’
and position 1/, the direction of wave propagation from the scatterer to the receiver is given by the
dimensionless unit vector #;, (see Fig. 2.2-2). Later in this section, we will show that the scattering
function is also a function of time because the unit vectors are actually time-varying. We will then
show how to express the scattering function as a function of frequency and time-varying angles of
incidence and scatter instead of time-varying unit vectors. The use of unit vectors is meant as a
shorthand notation.

The propagation of sound between the discrete point scatterer and receiver can also be
modeled as transmission through a linear, time-variant, space-invariant filter. The scattered
acoustic field is first incident upon the receiver at some time ¢ seconds where ¢> ¢ > t. Therefore,
the acoustic field (velocity potential) incident upon the receiver at time ¢ and position r, = (x,,¥,,2;)
due to a point source at 1, = (x],y/,2; ) is given by [7] '

Yu (1) = S;H,, (5, - /| fexp(+j2mf),  t>1>1,, (2.2-15)

where

exp(—jk|r2 - rl'|).

2.2-16
prE— (2.2-16)

HM(t’rz ’rxllf) =-

By referring to Fig. 2.2-2, we can express the position vector from the discrete point scatterer
to the receiver at time ¢’ > ¢, as

r,=r,-r, (2.2-17)
and upon substituting (2.2-5) into (2.2-17), we obtain

I, =11,0,=1,- A"V, (2.2-18)

where r;,=|r{,|, A, is the dimensionless unit vector in the direction of rj,, r , is given by (2.1-
14) and is repeated below for convenience (also see Fig. 2.2-2),

r,=r,—-r, (2.1-14)

and At’ is given by (2.2-6). Therefore, (2.2-15) and (2.2-16) can be rewritten as
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yu(b5) = S;H, (Lrpy| flexpCrjonfn,  1>1>1, (2.2-19)
and
expl—jk|r;
Hy (1.0}, f) = - ( ! "2). (2.2-20)
4rir;,

Let us now begin the process of obtaining a final expression for the time-harmonic velocity
potential incident upon the receiver. Substituting (2.2-14) into (2.2-19) yields

Yu (1) = SoHy, (t,’r(,),l f)gl( f’ﬁ(,),vﬁl’,z)HM (t,rf'zlf)exp(+j27ift), 1>1>1,,

(2.2-21)
or, equivalently,
Yu(tr) = S,Hy (61, | £, )exp(+j2mft), >0 >1,, (2.2-22)
where
HM(t’rZ |f’ro) = HM(t/’r(’),l f)gl( f’ﬁ(,),l’ﬁllJ)HM(t’rll,Z f)
B " exp[—'—jk(lr(’,'ll + r‘,'2|)}
= gl(f’no,n"l.z) 1672 r; [Ixs,
_ Y exp[-jk(|rl—ro+At’Vl|+|r2—r, - At 1I)]
B g,( f,no'l,n,'z) 167°|5, -1, + AP V||r, — 1, - Ar'V|
(2.2-23)
At’ is given by (2.2-6), and
t=t'+ ‘—ﬂ (2.2-24)
c
or
r=t— l—r]-'z—l, (2.2-25)
c
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where r{, is'given by (2.2-18). Note that if the bistatic scattering problem shown in Fig. 2.2-1

corresponded to transmission through a space-invariant filter, then the complex frequency response
given by (2.2-23) would be a function of the vector spatial difference r, — r,, which it is not.

In order to evaluate the complex frequency response given by (2.2-23), we must derive

solutions for the unit vectors iy, and #,, and the ranges ‘r(’ml and ]rl"z in terms of known

quantities. Let us begin with [r |. Since
ry| =101, (2.2-26)
substituting (2.2-10) into (2.2-26) yields
2
r(;'lI =(ry, +A'V))e(r, +A'V). (2.2-27)

Expanding the right-hand side of (2.2-27) and taking the square root of both sides of the resulting
equation yields

V2
|r(’).1’= Tol l+i(ﬁo_10V1)At'+ har ) (2.2-28)
r(),l ro,]
or
12
AV V,AY
roi|= o 1'*'2Vl t (g, ® nvl)-i-l ‘ : (2.2-29)
Tou 2 n,

Although (2.2-28) and (2.2-29) are exact expressions for the range |r(’“|, we cannot compute

a value for lr6'1| until we derive an expression for A’ in terms of Ir(’,'l . By referring to Fig. 2.2-2, it

can be seen that

"’, >t | (2.2-30)

Substituting (2.2-30) into (2.2-28) and squaring both sides of the resulting equation yields the
following second-order polynomial

2
Alr;)| - B

-C=0, (2.2-31)

7
Lo,

with exact solution
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Fou= o , (2.2-32)
where
2
A= 1—(% , (2.2-33)
C
B=2r MVl | (2.2-34)
’ C
and
C=r. (2.2-35)

The solution given by (2.2-32) is the constant value of range between the point source and the
discrete point scatterer when the transmitted acoustic field is first incident upon the discrete point
scatterer at time instant ¢ after motion begins at time instant ¢, where ¢’ > t,. The decision to use
either the plus or minus sign in (2.2-32) is dictated by the fact that range must be positive. Let us

solve for lrl' 2| next.
Since

, A
| =xerl,, (2.2-36)
substituting (2.2-18) into (2.2-36) yields

2 |
ry,| =, - ArV)e(r,~ArV). (2.2-37)

Expanding the right-hand side of (2.2-37) and taking the square root of both sides of the resulting
equation yields

512
‘rf,zl =hal1- -—2—(ﬁl,z- VDAL + har . (2.2-38)
na LY
or
12
4 R . 1 Y2
lr;,z =h, 1”2VIAt (nn.z‘”vl)__v'lAt . (2.2-39)
N2 2 n,
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Although (2.2-38) and (2.2-39) are exact expressions for the range lrl’il’ we cannot compute a
value for until we derive an appropriate expression for A¢’. We will first solve for a constant

[see (2.2-32)]. We will

’
r,

value for by expressing At in terms of the known constant range

’
I,

’
Lo

then solve for a time-varying |r,"2| by expressing At" exclusively in terms of |r/,

Since (2.2-30) already expresses At" in terms of substituting (2.2-30) into (2.2-38)

yields

’
l‘0,1 ?

V2

. (2.2-40)

’
r0,]

-~ ?
(n,*V) ’r"’" |4
+ —
C rlvz C rl'z

’ —
Fl=1,1-2

where |r(’,_1| is given by (2.2-32). The solution given by (2.2-40) is the constant value of range

between the discrete point scatterer and the receiver when the scattered acoustic field is first incident
upon the receiver at time instant ¢ after motion begins at time instant ¢z, where 1>t >¢ .

As we previously mentioned, we will now solve for a time-varying

r Zl by expressing Af’

exclusively in terms of |r| 2'. We begin by substituting (2.2-25) into (2.2-6) which yields

’

’ r"z ’ '
At'=t—-t ——, t>t'>1t, (2.2-41)
C

and upon substituting (2.2-4) ihto (2.2-41), we obtain

’

’ rl'z ’
At'= At——, t>t>t . (2.2-42)
Cc

The solution for |r,’ 2’ can be obtained by substituting (2.2-42) into (2.2-38) and squaring
both sides of the resulting equation. Doing so yields the following second-order polynomial

A lr{,z(t)|2 +8(1) rf,z(t)l -e(H=0, 12t +7, (2.2-43)
with exact solution
—B() L+ BU ) +44L(
r{z(t)|= @ ‘/ 2)(4) A ), 1>t +7, (2.2-44)

where
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. X |
A=1- ( K) , (2.2-45)
C
2 i,V
g(=2"ar-25, 20N (2.2-46)
C ! c
() =V AD =21, (f,,* V)AL + 1}, (2.2-47)
At=t-1t, 12t +7, (2.2-48)
and (see Fig. 2.2-2)
r, r
T= i e (2.2-49)
C C

is the time delay in seconds (the amount of time it takes for the transmitted acoustic signal to begin
to appear at the receiver after motion begins at time instant ¢,) where the constant values of range

|r;,| and |r;,| are given by (2.2-32) and (2.2-40), respectively. It is important to note that if (2.2-
43) is evaluated at ¢=¢_+ 7, then it can be shown that

r,(t,+7)|=

/’
L3P

, A , (2.2-50)

where [r{ 2| is given by (2.2-40).

Now that we have an exact solution for

r;,(#)| as given by (2.2-44), we can use it to obtain an

exact solution for the time-varying range |r(’m(t)| as follows. With the use of (2.2-30) and (2.2-42),
we can write that

ro,(n)|=cAr-

0, 21,47 (2.2-51)

where At is given by (2.2-48),

ry 2(t)] is given by (2.2-44), and 7 is given by (2.2-49). Equation

(2.2-51) indicates that if we are given a value of At, which determines the value of

1 2(t)l, then we

can use those two values to compute what

r(’m(t)l must have been - we are working backwards from

a value of At to a value for |r] 2(t)l to a value for |r6,1(t)l- Note that if we evaluate (2.2-51) at

t=t_ +7,then

rp(t, +7)|= cr- I, +7)|, (2.2-52)

and upon substituting (2.2-49) and (2.2-50) into (2.2-52), we obtain
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Al (2.2-53)

lr('”(tm + r)l=

where lr(’,',l is given by (2.2-32).
Let us next solve for the unit vectors A, and 7/, so that we can evaluate the scattering

function g,( fihg,ny 2) and, hence, the complex frequency response of the ocean. Let us begin with
the unit vector 7. From (2.2-10),

ng, = 1, (ro'I + Al V,). (2.2-54)
l'O,l .
Substituting (2.2-30) into (2.2-54) yields
. 1 ro,(9) |
ng (1) = _’——liro‘l + Ll V, }, 12t +7, (2.2-55)
(1) c

where

r(’,'l(t)l is given by (2.2-51), r, is given by (2.1-6), and 7 is given by (2.2-49). Note that if
we evaluate (2.2-55) at t=1¢_+ 7, then

. |r(')'l(tm + r)l
no(t,+D=r———|ry+——V |, (2.2-56)
|r0_,(tm + T)I ¢
and upon substituting (2.2-53) and (2.2-30) into (2.2-56), we obtain
' Ayt +17)= Ry, (2.2-57)

where 7, is given by (2.2-54). And by referring to (2.1-35) and (2.1-36), we can write that

O (D =cos™ wy (), 121, +T, (2.2-58)
and
Wo (1) = tan™ V,L(t) , 12t +7, (2.2-59)
' uy (1) .

where u,(2), v,(1), and wy (1) are the dimensionless, time-varying direction cosines with respect

tothe X, Y, and Z axes, respectively, associated with the time-varying unit vector ng,(f) given by

(2.2-55), and 7 is given by (2.2-49). Equations (2.2-58) and (2.2-59) are the angles of incidence at
the discrete point scatterer.
From (2.2-18),
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1

Ay = —1(r.— AT V). (2.2-60)
I,
Substituting (2.2-42) into (2.2-60) yields
. 1 ry,(f)
A0 = =N~ [At - —L-l }V, , it 4T, (2.2-61)
I, c

where [r] 2(t)l is given by (2.2-44), r,, is given by (2.1-14), At is given by (2.2-48), and T is given
by (2.2-49). Note that if we evaluate (2.2-61) at = t, + 7, then

. |r£2(tm + ‘L')I
n,(t, + 1) = ————ir,~ | T - —— |V, 1, (2.2-62)
|r; (1, + r)l 4
and upon substituting (2.2-49), (2.2-50), and (2.2-30) into (2.2-62), we obtain
iy, +T) = Ay, (2.2-63)

where #;, is given by (2.2-60). And by referring to (2.1-44) and (2.1-45), we can write that

O (=cos wi,(), t21,+7, (2.2-64)
and
o vi ()
L(O=tan”| 2==| >t +7, (2.2-65)
Viz (“1,2(1)

where u],(f), v{,(t), and w/,(r) are the dimensionless, time-varying direction cosines with respect
tothe X, Y,and Z axes, respectively, associated with the time-varying unit vector 7;,(f) given by

(2.2:61), and 7 is given by (2.2-49). Equations (2.2-64) and (2.2-65) are the angles of scatter at the
receiver.

Note that since the unit vectors 1y,(¢) and 7, ,() given by (2.2-55) and (2.2-61), respectively,
are functions of time, the scattering function is also a function of time, that is,

g fhigniily)= g fhg (0 (0), 21, +7. (2.2-66)

With the use of (2.2-22) and (2.2-23), and by replacing the real wavenumber k in (2.2-23)
with the complex wavenumber K given by (2.1-20), we can summarize our results as follows: for
the bistatic scattering problem shown in Fig. 2.2-1, the time-harmonic velocity potential in squared-
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meters per second incident upon the receiver at r, = (x;,¥,,2,), due to a time-harmonic point source
at 1, = (x,,Y,.2,) and a moving discrete point scatterer initially at r, = (x,,,,z,), is given by

Yu(try) =S, H, (61| fox,)exp(+j2nfr), 121, +7, (2.2-67)

where S, is the source strength in cubic meters per second,

5, (0)] +[riz0))|

/(1)

exl -1

167°(ry (1)

r1:00)

(2.2-68)

H,, (15, £i5) = £, £, A1) expl- jK([ra 0+

is the time-variant, space-variant, complex frequency response of the ocean at frequency f hertz,

&( £.75,(0.7,(0) = 8.( .65, W0, 8L(D.W (1) (2.2-69)

is the scattering function of the discrete point scatterer in meters, the angles of incidence 6;,(f) and
W,(#) are given by (2.2-58) and (2.2-59), respectively, the angles of scatter 6/,(f) and y,(z) are
given by (2.2-64) and (2.2-65), respectively, a( f) is the real, frequency-dependent, attenuation
2(t)| is given by (2.2-44), the real
wavenumber k in radians per meter is given by (2.1-5), and the time delay 7 in seconds is given by
@2 419.f):t us next relate the scattering function, the differential scattering cross section, and target
strength of the discrete point scatterer. The target strength (TS) is defined as follows [6]:

coefficient in nepers per meter, Ir(’m(t)l is given by (2.2-51),

0, A (0,A(0))
A

TS = 10]og10{ }dB reA,, 12t +T, (2.2-70)

ref

where [5, 6]

o, ( f.A5 ()= lim . 12t +T,

ranoel L (r/(0)) (4m)?

[[r:.zmlz Iav&(rz)]: Jsu( £ )|

(2.2-71)

is the differential scattering cross section with units of squared meters, 1, (r,'(t)) and 1, (r,) are
the time-average, incident and scattered intensities, respectively, with units of watts per squared
meter, gl( f ,r‘z(’)',(t),ﬁl" 2(t)) is the scattering function of the discrete point scatterer with units of
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meters, A, is a reference cross-sectional area commonly chosen to be equal to 1 m?, and the time
delay 7 in seconds is given by (2.2-49). ‘ '

Example 2.2-1 Monostatic Scattering Geometry

In this example the discrete point scatterer is in motion with constant velocity vector V,, but
the scattering geometry is monostatic versus bistatic. For a monostatic (backscatter) scattering
geometry, both the transmitter and receiver are located at the same position, that is,

_ L,=1r,. (2.2-72)
Substituting (2.2-72) into (2.1-14) yields
| F2=—Tops (2.2-73)
where r, is given by (2.1-6). Therefore,
N2=To, (2.2-74)
and
fiyy =Ty, (2.2-75)

And upon substituting (2.1-73) into (2.2-18), we obtain

r,=-rg, (2.2-76)
where ry, is given by (2.2-10). Therefore,
rp,|=|rs| (2.2-77)
and
iy = =1, (2.2-78)
and upon generalizing,
It =|r0, o) (2.2-79)
and
AL (0 = = A (8). (2.2-80)

With the use of (2.2-79) and (2.2-80), the time-variant, space-variant, complex frequency
response of the ocean given by (2.2-68) reduces to

27



: expl-2a(f)|re, 1)
H), (t,r2 |f»r0) = gl( f’ﬁ(’),l(t)’_ﬁ(’)‘l(t)) xp[(4. ’ ¥ )|;2 | exp[—j2k r;’"(t)”’ t21,+1,
| o, (¢
(2.2-81)
where
&\ fohig (0= g (0) = g, £.6,,(0.W 6, (07— 65,07+ (1), (2.2-82)

6,,(t) and y (1) are the angles of incidence given by (2.2-58) and (2.2-59), respectively, and
0,,(t) =7 —6;,(t) and y,,(1) =  + y () are the angles of scatter. Substituting (2.2-79) into (2.2-
44), (2.2-74) and (2.2-75) into (2.2-46) and (2.2-47), and (2.2-77) into (2.2-49) yields

—B() 1+ B )+ 444t
r(’),(t)|= © \/ @ 4 ), 121 +7, (2.2-83)
' 24
where
2
A=1- ( Y‘—) , (2.2-84)
c
. ) n
8= 2V—‘At +2r, iy * Wy , ' (2.2-85)
c T
(1) =V (AN + 21, (R, 0 VDAL + 12, (2.2-86)
At=t-1t_, 2t +7, (2.2-87)
and
2ir,
T= i (2.2-88)
C
is the time delay in seconds, where the constant value of range [ry,| is given by (2.2-32).

2.3 All Three Platforms In Motion

In this section we will analyze the bistatic scattering problem shown in Fig. 2.3-1. All three
platforms - the transmitter, discrete point scatterer, and receiver - are in motion. Motion corresponds
to a time-variant problem. As mentioned in the Introduction, the three platforms will be treated as
being in an unbounded, homogeneous ocean medium. Although the propagation of sound between
the source and discrete point scatterer, and between the discrete point scatterer and receiver can be
treated as transmission through linear, time-variant, space-invariant filters; the overall solution for
this bistatic scattering problem corresponds to transmission through a linear, time-variant, space-
variant filter. The presence of a discrete point scatterer in an unbounded, homogeneous fluid
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Figure 2.3-1. Bistatic scattering geometry when motion begins at time ¢= ¢, seconds. Point 0,
Fy(r,), is the transmitter; point 1, F(r;), is the discrete point scatterer; and point 2, P,(r,), is the
receiver. All three platforms are in motion.
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medium (i.e., a fluid medium with constant speed of sound and ambient density) causes the medium
to be space-variant.

The velocity vectors of the transmitter, V,, the discrete point scatterer, V,, and the receiver, V,,
are given by

V, =V, , (2.3-1)

Vi =Vii,, (2.3-2)
and

vV, =V,a,, (2.3-3)

where V;, V,, and V, are the speeds in meters per second of the transmitter, the discrete point
scatterer, and the receiver, respectively, and 7, , #,, and #, are the dimensionless unit vectors in

the directions of V,, V|, and V,, respectively. The velocity vectors given by (2.3-1) through (2.3-3)
are constant, that is, the speeds and directions are constants - there is no acceleration. Motion
begins at time ¢=1¢, seconds. We will model the propagation of sound from the time motion
begins.

® Since all three platforms are now in motion, the position vectors from the origin to the
transmitter, discrete point scatterer, and receiver - denoted by &,(r), &,(¢), and &,(¢), respectively -
are functions of time given by

R,(=r,+AtV,, 121, (2.3-4)

R()=r+AtV, t2t, (2.3-5)
and

2,(=r,+AtV, 1>t (2.3-6)

where 1, = (xy,¥,,2)> I, = (x,,¥,,2,), and 1, = (x,,y,,2,) are the position vectors from the origin to

the transmitter, discrete point scatterer, and receiver, respectively, when motion begins (see Fig. 2.3-
1), and

At=t-1t,, t2t,. (2.3-7)
Note that 2(t,)=r,, R(t,)=r,,and ®,(1,)=r,. Instead of trying to solve this bistatic scattering
problem directly with all three platforms in motion, we will first create an equivalent problem
involving the transmitter and the discrete point scatterer where we can treat the transmitter (sound
source) as being motionless. We will then create a second equivalent problem involving the discrete
point scatterer and the receiver where we can treat the discrete point scatterer (acting as a sound
source) as being motionless. This can be accomplished by working with relative velocity vectors.

When motion begins at time ¢,,, the scalar component of V, in the direction of V, is given by
(see Fig. 2.3-2)

A, @ Vo=1i, @ Vyii, = Vy(R, o5, ). (2.3-8)
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Figure 2.3-2. Scalar component of V, in the direction of V..
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Therefore, the velocity vector of the discrete point scatterer relative to the velocnty vector of the
transmitter in the direction of the velocity vector of the discrete point scatterer nv is given by

Vio = Vi= Ay, o V)i, = [V, Vy(y, o )]y, (2.3-9)

By using the relative velocity vector V, ,, the transmitter (sound source) can be treated as being
motionless. Therefore, when motion begins, the source distribution x,,(¢,r) at time ¢ and position

r=(x,y,z) will be treated as a motionless, time-harmonic, point source with units of inverse
seconds, that is, let

Xy (2,1) = S,6(r — 1) exp(+j27 f1), (2.3-10)

where S, is the source strength in cubic meters per second, the impulse function &(r-r,), with
units of inverse cubic meters, represents a point source at I, = (x,,Y,,2,), and f is frequency in
hertz. The sound source has been turned on forever, that is, since 7= —oo. In addition, since we are
now working with the relative velocity vector V, ;, we need to introduce the new position vector
RO =1+AtV,,, 121, (2.3-11)
where Az is given by (2.3-7). Compare (2.3-11) with (2.3-5). Note that 2"%(z,)=r,. Also note
that if the transmitter is not in motion, then V,=0, and as a result, V,, =V, [see (2.3-9)] and ..
R"V(r) = ®,(¢) [see (2.3-11) and (2.3-5)]. And if the discrete point scatterer is nof in motion, then
V,=0 and the relative velocity vector V,, given by (2.3-9) is undefined. In this case we set
Vio=0,andasaresult, 2'7(1)=2,(t) =r,.
When the transmitted acoustic ﬁeld is first incident upon the discrete point scatterer at some

time " seconds where ¢’ > t,,, the position vector from the origin to the discrete point scatterer is
given by [see (2.3-11) and F1g 2.3-3]

=2 =+ AV, >, (2.3-12)

m

wheére

At'=1t—-1t , >t . (2.3-13)
The propagation of sound between the source and discrete point scatterer can be modeled as
transmission through a linear, time-variant, space-invariant filter. Therefore, the acoustic field
(velocxty potential) incident upon the discrete point scatterer at time ¢’ and posmon r/=(x/,y,2/)
is given by [7]

YuOx))= SH,, (¢.x/-x | flexp(+j2mfr),  ¢>1,, (2.3-14)

m

where

_ exp(— I - r0|) 2.3-15)
47|r! - 1| '

HM(t’,q’~r0|f)=
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Figure 2.3-3. Bistatic scattering geometry when the transmitted acoustic field is first incident
upon the discrete point scatterer at time ¢’ seconds and when the scattered acoustic field is first
incident upon the receiver at time ¢ seconds where t> ¢’ > t,. Point 0, Fy(r,), is the transmitter;

point 1, B(r), is the discrete point scatterer; and point 2, F,(r,), is the receiver. All three
platforms are in motion.
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is the time-variant, space-invariant, complex frequency response of the ocean at frequency f hertz,
and k is the wavenumber in radians per meter given by (2.1-5) and is repeated below for
convenience:

k=2nflc=2n/A. (2.1-5)

By referring to Fig. 2.3-3, we can express the position vector from the point source to the
discrete point scatterer at time ¢’ as

ES S (2.3-16)
and upon substituting (2.3-12) into (2.3-16), we obtain

To, =715, fg = o + A"V, g, (2.3-17)

where ry, = I"BJ" Ry, is the dimensionless unit vector in the direction of ry,, ry, is given by (2.1-6)
and is repeated below for convenience (also see Fig. 2.3-3),

Iy, =I—1, (2.1-6)

and At’ is given by (2.3-13). Therefore, (2.3-14) and (2.3-15) can be rewritten as

Yu (X)) = SoH,, (U | flexptjonfe),  ¢>1,, (2.3-18)
and
exp|—jk|r;
Hy(tx5,| f) = ——-(———'l‘l—) (2.3-19)
4miry,

Let us now create a similar equivalent problem involving the discrete point scatterer and the
receiver where we can treat the discrete point scatterer (acting as a sound source) as being
motionless. When the transmitted acoustic field is first incident upon the discrete point scatterer at
time ¢’ > ¢, seconds, the position vector from the origin to the receiver is given by [see (2.3-6) and
Fig. 2.3-3]

m

r,=2,(')=r,+Ar'V,, >t , (2.3-20)
where At’ is given by (2.3-13). Equation (2.3-20) indicates that after A¢’ seconds, the receiver -

independent of the transmitter and the discrete point scatterer - travels an additional distance of
A1V, meters in the direction 7, (see Fig. 2.3-3). Also at time ¢’, the scalar component of 'V, in

the direction of V, is given by (see Fig. 2.3-4)
A, eV,=n, e Vi, =V (i, *n,). (2.3-21)

Therefore, the velocity vector of the receiver relutive to the velocity vector of the discrete point
scatterer in the direction of the velocity vector of the receiver ﬁvz is given by
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Figure 2.3-4. Scalar component of V, in the direction of V,.
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V., =V, =Gy, o V)i, =[V, - Vi(h,, o i, )], (2.3-22)

By using the relative velocity vector V, ,, the discrete point scatterer (acting as a sound source) can
be treated as being motionless. Therefore, in order to compute the acoustic signal incident upon the
receiver, we treat the discrete point scatterer at time #2>¢ >, and position r/ as another

motionless, time-harmonic, point source with units of inverse seconds, that is, let [see (2.3-10) and
Fig. 2.3-3]

x,,(t,r) = S;6(r — r;’ Yexp(+j2nft), (2.3-23)

where ] is the source strength in cubic meters per second, and the impulse function d(r-ry),
with units of inverse cubic meters, represents a point source at r, = (x;,y/,2, ), where 1, is given by
(2.3-12). The source strength S; will be given later.

Since we are now working with the relative velocity vector V, ;, we need to introduce the new
position vector

2=+ A"V, 120>1, (2.3-24)
where
At"=t-t, 120>t (2.3-25)

and r; is given by (2.3-20). Compare (2.3-24) with (2.3-6). Note that 2{"(¢") =r; . Also note that
if the discrete point scatterer is not in motion, then V,=0, and as a result, V,, =V, [see (2.3-22)]
and 2;2'”0) =2,(t) for 121 >t [see (2.3-24), (2.3-20), and (2.3-6)]. And if the receiver is not in
motion, then V, = 0 and the relative velocity vector V,, given by (2.3-22) is undefined. In this case
we set V,, =0, and as aresult, 25"(1)=R,(1) =r, for 121 >1,.

When the scattered acoustic field is first incident upon the receiver at some time ¢ seconds

where 1>1¢ >t _, the position vector from the origin to the receiver is given by [see (2.3-24) and
Fig. 2.3-3]

=R AV, 150>, 2326)

where At” is given by (2.3-25). Equation (2.3-26) indicates that after At” seconds, the receiver
travels an additional distance of Az”V, | meters in the direction 7, (see Fig. 2.3-3). By referring to
Fig. 2.3-3, it can be seen that

14

r,=r’ -r, : (2.3-27)

where ry, is the position vector between the discrete point scatterer and the receiver at time
t> 1t >t . Substituting (2.3-12) and (2.3-26) into (2.3-27) yields

r, =10, =1, +A(V, =V, ) +At"V, ' (2.3-28)
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where 7/, = Ir,’"z , iy is the dimensionless unit vector in the direction of r},, r,, is given by (2.1-
14) and is repeated below for convenience (also see Fig. 2.3-3),

r,=r,—r, (2.1-14)

At is given by (2.3-13), and At” is given by (2.3-25). Equation (2.3-28) can also be obtained
directly from Fig. 2.3-3 - without the use of (2.3-27) - simply by using vector addition. Doing so
yields

v, =L, = =AUV, +r, + AV, + At”V, |

. (2.3-29)
=1, +A'(V, =V, ) ) +A"Y, .

The propagation of sound between the discrete point scatterer and receiver can also be
modeled as transmission through a linear, time-variant, space-invariant filter. Therefore, the
acoustic field (velocity potential) incident upon the receiver at time ¢ and position r,” = (x5,¥5,2;)
due to a point source at r; = (x/,y;,2, ) is given by [7]

Yu(try)= SoH, (67 -1/ | f)exp(+j2nfr),  t>1>1, (2.3-30)
where
exp(=jk|ry - r7|) N
H, (tx)-x'|f)=- 2.3-31
ulor ~x|f) == (2.3-31)

With the use of (2.3-27), (2.3-30) and (2.3-31) can be rewritten as

yu@xy)= S;H, (exp|fJexpcrjonpr,  1>0>1,, (2.3-32)
and
. exp(— Jkiry, ) .
Hy (6375 f)= ] (2.3-33)
The source strength S, is given by [see (2.3-18)]
So = SOHM(t”r(,).llf)gl( f’ﬁé.vﬁll.’z)’ (2.3-34)

where gl( fihg,ny 2) is the scattering function of the discrete point scatterer with units of meters as
discussed in Section 2.1. Since the transmitted acoustic field is first incident upon the discrete point
scatterer at time ¢’, the direction of wave propagation from the source to the scatterer is given by the
dimensionless unit vector 7y, (see Fig. 2.3-3). Similarly, since the discrete point scatterer is being
treated as another point source at time ' and position 1/, and the scattered acoustic field is first
incident upon the receiver at time ¢> ¢’ > ¢, , the direction of wave propagation from the scatterer to
the receiver is given by the dimensionless unit vector 7", (see Fig. 2.3-3). Later in this section, we
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will show that the scattering function is also a function of time because the unit vectors are actually
time-varying. We will then show how to express the scattering function as a function of frequency
and time-varying angles of incidence and scatter instead of time-varying unit vectors. The use of
unit vectors is meant as a shorthand notation.

Let us now begin the process of obtaining a final expression for the time-harmonic velocity
potential incident upon the receiver. Substituting (2.3-34) into (2.3-32) yields

/

)gl(f,ﬁ{,‘,,ﬁl’.z) (t rlzlf)exp(+127rft) 1>1>1,

Yu (t’rz”) = S§,H,, (t,’r(’).l

(2.3-35)
or, equivalently,
Yu(tx) = SoH,, (117 | f.x Jexp(+ j2nfr),  t>1>1,, (2.3-36)

where

(t r, lf 1‘0) (t,’r(’).llf)gl f nowﬁlﬂz) (t rlz‘f)

exp[ Jk |r0,‘+|r |)]
167°(r;,

- ~y o Ay
= gl( f’no,l’nl.Z)

exp[-—jk(lr, -, + At’V,_0| + |r2 - +At"(V,-V,,) +At"V2‘,l)]
16775, — 1, + AV, e, — 5 + AP (V, = V, ) + A"V, |

- Ay Ap
"'gn( ’nO,l’nI.Z)

(2.3-37)

At’ is given by (2.3-13), V, , is given by (2.3-9), At” is given by (2.3-25), V,, is given by (2.3-
22), and

rl’
t=t'+ I;ZI (2.3-38)
C
or
rll
f=1- % (2.3-39)

where 1y, is given by (2.3-28). Note that if the bistatic scattering problem shown in Fig. 2.3-1

corresponded to transmission through a space-invariant filter, then the complex frequency response
given by (2.3-37) would be a function of the vector spatial difference r,”—r,, which it is not [r,” is
given by (2.3-26)].
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In order to evaluate the complex frequency response given by (2.3-37), we must derive
solutions for the unit vectors 7y, and 7, and the ranges |r6’1| and lrl"z\ in terms of known

quantities. Let us begin with Ir(’,,ll. Since

" . r(;,], (2.3-40)

substituting (2.3-17) into (2.3-40) yields

LHAPY, ) e (T, + ATV, ). (2.3-41)

Expanding the right-hand side of (2.3-41) and taking the square root of both sides of the resulting
equation yields

V2
V. A
ry|=r,|l+— (nmo V)AL +| 22— | (2.3-42)
To. To,
or
. A 1/2
V. At 1V, AY :
1‘6.: = Iyl +2 0 (n0] nv )+ . (2.3-43)
Tos 2 1y
Although (2.3-42) and (2.3-43) are exact expressions for the range
At in terms of Ir[)'l|. By referring to Fig. 2.3-3, it
can be seen that

At'= , >t (2.3-44)

Substituting (2.3-44) into (2.3-42) and squaring both sides of the resulting equation yields the
following second-order polynomial

A|r(’,,l‘2—B

ro|-C=0, (2.3-45)

with exact solution

I_B+w/32+4AC

i 24

(2.3-46)
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where

2
A= 1-(5) , (2.3-47)
c
B=2r, " Vi, (2.3-48)
C
and
C=r. (2.3-49)

The solution given by (2.3-46) is the constant value of range between the point source and the
discrete point scatterer when the transmitted acoustic field is first incident upon the discrete point
scatterer at time instant ¢* after motion begins at time instant ¢, where ¢’ >t . The decision to use
either the plus or minus sign in (2.3-46) is dictated by the fact that range must be positive. Let us

solve for lr,”2| next.
Since

) _
|r.’.’z =r,,0r,, (2.3-50)

substituting (2.3-29) into (2.3-50) yields

T2 [r ATV, = Vi )+ AV, Jo[r, HAK(V, - Vi) + AV, | (2351

”
r1,2

Expanding the right-hand side of (2.3-51) and taking the square root of both sides of the resulting
equation yields

”
Ir 1.2

43 1.2 N2

2 2
V, -V, |Ar v A
=r1.2{1+r2 [ﬁl,z'(Vz-VLO)]At%(I—Z—L) +l(ﬁ,_2°V2‘,)At'”+( 21 j
1,2

+2 Atl2AtII[

12
V,, o (V, - Vl,o)]} )

1,2

(2.3-52)

or
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”
L

Vi AY| . . At A oA
=r1,2{1—2 1:’ |:(nl.2.n"n)+2r (Vz(nvlon‘,?)—VLO):|

1,2 1,2

1,2 1,2

V,AY . . At A A
+2-2 |:( n,eny, )+ (Vz —Vio(ny ony, ))}
2r,

1/2
vV, At”} " V, At” ! A
+2 2,1 [(nl,Z Y nv2 ) + 22,1 + ét_.(‘/z —_ Vl.O(nV, [} nVZ )):I} . -

R Na N

(2.3-53)

Although (2.3-52) and (2.3-53) are exact expressions for the range |rl’f2|, we cannot compute
a value for lr{le until we derive appropriate expressions for A¢’, At”,and ArAt”. We will first

solve for a constant value for

”
l‘1,2

by expressing At’, At”, and Ar’At” in terms of the known
constant range

ry,| [see (2.3-46)] and Irl’le. We will then solve for a time-varying |r{f2| by
expressing At’, At”,and Ar'At” exclusively in terms of lrl”2| Since (2.3-44) already expresses

At in terms of Ir{,_,l, we begin by substituting (2.3-38) into (2.3-25) which yields (also see Fig.
2.3-3) : :

At'=—, t>t>t, (2.3-54)

AV A =+——, t>t'>t . (2.3-55)

[}
[

The solution for rl’_’zl can be obtained by substituting (2.3-54) into (2.3-52) and squaring
both sides of the resulting equation. Doing so yields the following second-order polynomial

2
Aty =B, |1~ €,=0, (2.3-56)
with exact solution
” goivg§+4’4060 .
2= , (2.3-57)
' 24,
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where

A,
Ay=1-—, (2.3-58)
A+ AAY
B,= ————, (2.3-59)
c
Co= A, (A + AAY + 17, _ (2.3-60)
A=2r,A L0 (V- V], (2.3-61)
2
A,=|V,-V, [, (2.3-62)
Ay=2r,(,0 V,), (2.3-63)
A,=V), (2.3-64)
A;=2[V, 0 (V,- V)], (2.3-65)
and
4 ’ Ir(,)" ’
At=t'—t =—, >t (2.3-66)

c

where |r5,,| is given by (2.3-46). The solution given by (2.3-57) is the constant value of range

between the discrete point scatterer and the receiver when the scattered acoustic field is first incident
upon the receiver at time instant ¢ after motion begins at time instant z, where t>¢ >t . The
decision to use either the plus or minus sign in (2.3-57) is dictated by the fact that range must be
positive.

As we previously mentioned, we will now solve for a time-varying Ir,’_’2

by expressing At’,

Ar”,and Ar'At” exclusively in terms of |r,|. We begin by substituting (2.3-39) into (2.3-13)
which yields
, L,
At'=t—t ——, t>V>t (2.3-67)
c

and upon substituing (2.3-7) into (2.3-67), we obtain

”

’ r1v2 ’
A= At——, t>t>1 . (2.3-68)

C

And upon multiplying (2.3-68) by (2.3-54),
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2
4 4 |rl,',2 rl",2 4
ArAr=APE | LA s sy (2.3-69)
c C

The solution for |r,"’2 can be obtained by substituting (2.3-68), (2.3-54), and (2.3-69) into

(2.3-52) and squaring both sides of the resulting equation. Doing so yields the following second-
order polynomial

Aleso| +80)

r0|-em=0, 21,+7, (2.3-70)

with exact solution

—B(H) 1+ BX()+4A4L(t |
Ir{.’z(t)|= © \fz;) g(), 121, +7, (2.3-71)
where
A,+A,—A
A=1- (—2——-—7“-——1)- 2.3-72)
c .

(2A,- A)At+ (A~ A,)

B(1) = (2.3-73)
c
C()=A,(AD’ + AAt+ 1, (2.3-74)
A, through A, are given by (2.3-61) through (2.3-65),
At=t-t, t>t,+71, (2.3-75)
and (see Fig. 2.3-3)
rl rll
T= l——‘“— +122 (2.3-76)
C C

is the time delay in seconds (the amount of time it takes for the transmitted acoustic signal to begin
to appear at the receiver after motion begins at time instant ¢, ) where the constant values of range

|r.| and |r(;| are given by (2.3-46) and (2.3-57), respectively. It is important to note that if (2.3-

70) is evaluated at ¢ = ¢, + T, then it can be shown that (2.3-70) can be rewritten in the form of (2.3-
56) and, as a result,

Xyt + 7| =73, | 2.3-77)
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where (r/,

is given by (2.3-57).

Now that we have an exact solution for Ir,’ ’2(t)| as given by (2.3-71), we can use it to obtain an

exact solution for the time-varying range r(’n(t)l as follows. With the use of (2.3-44) and (2.3-68),

we can write that

r{,_,(t)| =cAt-

rl’fz(t)|, t2t +7, (2.3-78)

where At is given by (2.3-75), lr,’_’z(t)l is given by (2.3-71), and 7 is given by (2.3-76). Equation

(2.3-78) indicates that if we are given a value of At, which determines the value of

rl’"z(t)l, then we
can use those two values to compute what ‘r{,y,( t)l must have been - we are working backwards from

a value of Ar to a value for r('),,(t)l. Note that if we evaluate (2.3-78) at

t=t_+17,then

r{é(t)| to a value for

ro,(t, + r)l =T |r(t, + r)l, (2.3-79)

and upon substituting (2.3-76) and (2.3-77) into (2.3-79), we obtain

et + 0| =]re) (2.3-80)

where |r{)_,| is given by (2.3-46).
Let us next solve for the unit vectors 7, and 7}, so that we can evaluate the scattering

function g,( £ ﬁg,,,ﬁ,{;) and, hence, the complex frequency response of the ocean. Let us begin with
the unit vector 7,,. From (2.3-17),

] -

ar
ng =

(ros+ AL V). (2.3-81)

’
ol

Substituting (2.3-66) into (2.3-81) yields

5,0

c

ﬁ(’).l(t) = | 1 |:r0,1 + Vl,o}s t2 t,,, +7, ' (23-82)

ro,(0)|

where rgv,(t)! is given by (2.3-78), r,, is given by (2.1-6), V,, is given by (2.3-9), and 7 is given
by (2.3-76). Note that if we evaluate (2.3-82) at =1t + 7, then



ro,(t,+7)
, [rm + l o ‘ Vw}, (2.3-83)
£, (1, +7) c

Roy(t, +T) =1

and upon substituting (2.3-80) and (2.3-44) into (2.3-83), we obtain
Ag,(t, +T) = Hg,, (2.3-84)

where 7, is given by (2.3-81). And by referring to (2.2-58) and (2.2-59), we can write that

6, (H=cos" wo, (D), 121, +T, (2.3-85)
and
Vo (1) =tan™ vL(t) s 121,47, (2.3-86)
ug, (0

where uj,(f), vo,(2), and wo,(f) are the dimensionless, time-varying direction cosines with respect
tothe X, Y,and Z axes, respectively, associated with the time-varying unit vector ng,(f) given by

(2.3-82), and 7 is given by (2.3-76). Equations (2.3-85) and (2.3-86) are the angles of incidence at
the discrete point scatterer.
From (2.3-28),

ﬁf;=| |[l‘12+At(V Vo) +A7V,]. (23-87)

Substituting (2.3-68) and (2.3-54) into (2.3-87) yields

c( )I] s

. ()|
not)=—— - A t2t +7,

1
r,+ [At
ri(0)|

(2.3-88)

where Irl 2(t)| is given by (2.3-71), r,, is given by (2.1-14), At is given by (2.3-75), V,, is given

by (2.3-9), V,, is given by (2.3-22), and 7 is given by (2.3-76). Note that if we evaluate (2.3-88) at
t=t, +7,then

Ao, +17)=

__;_{ [_l_i_ﬂ}(v_vnl_(’:_)k,]
(1, +7)| c o«

(2.3-89)
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and upon substituting (2.3-76), (2.3-77), (2.3-44), and (2.3-54) into (2.3-89), we obtain
no(t, + 1) =n, (2.3-90)

where 7.’ is given by (2.3-87). And by referring to (2.2-64) and (2.2-65), we can write that

O/ =cos w(D), 21, +7, (2.3-91)
and
II. t )
yin = taf‘(%‘;—}%} t2t +7, (2.3-92)
1,2

where u(,(2), v/5(t), and w;5(r) are the dimensionless, time-varying direction cosines with respect
tothe X, Y,and Z axes, respectively, associated with the time-varying unit vector 7,5(f) given by
(2.3-88), and 7 is given by (2.3-76). Equations (2.3-91) and (2.3-92) are the angles of scatter at the
receiver.

Note that since the unit vectors 7ig,(¢) and 71,%(¢) given by (2.3-82) and (2.3-88), respectively,
are functions of time, the scattering function is also a function of time, that is,

g fohga0) = g fLRLO.A5D), 121, +T. (2.3-93)

Let us next derive an expression for the time-varying position vector to the receiver when the
scattered acoustic field is incident upon the receiver. We begin by substituting (2.3-20) into (2.3-
26). Doing so yields

ry=r,+Atr'V,+At"V,,, (2.3-94)
which is the position vector from the origin to the receiver when the scattered acoustic field is first

incident upon the receiver at time instant ¢ after motion begins at time instant ¢, where t>1¢ >t .
And upon substituting (2.3-68) and (2.3-54) into (2.3-94), we obtain

l_I/ (t) rll (t)
2 I}Vz-kl 1 'VZI, 121, +7, | (2.3-95)
. ,

ry()=r,+ I:At—
(5

where At is given by (2.3-75), lr,’_’z(t)l is given by (2.3-71), V,, is given by (2.3-22), and 7 is given
by (2.3-76). Note that if we evaluate (2.3-95) at r=1¢_+ 7, then

r (L, +7) 5, +7T)
(1, +7)=r,+ [r - it | }Vz +12 | V.., (2.3-96)
c C
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and upon substituting (2.3-76) and (2.3-77) into (2.3-96), we obtain

” |r6.1 |r1"’2
ry(t,+7)=r+—V,+—V,,, (2.3-97)
c c

where |rg,| and |r,’f2| are given by (2.3-46) and (2.3-57), respectively. If we further substitute (2.3-
44) and (2.3-54) into (2.3-97), then

r, +7)=1/, (2.3-98)

where r,’ is given by (2.3-94).

With the use of (2.3-36) and (2.3-37), and by replacing the real wavenumber & in (2.3-37)
with the complex wavenumber K given by (2.1-20), we can summarize our results as follows: for
the bistatic scattering problem shown in Fig. 2.3-1, the time-harmonic velocity potential in squared-

meters per second incident upon the receiver at r; (r) = (x3(£),y;(£),2;()), due to a moving time-
harmonic point source initially at r, = (x,,Y,,2,) and a moving discrete point scatterer initially at
r, =(x,,¥,,2,), 1s given by

Yu (X7 (D) = SoH, (X7 (D] fo0)exp(+j2mfD), 121, +7, (2.3-99)

where 1}’ (¢) is given by (2.3-95), S, is the source strength in cubic meters per second,

£, (0)| + [ei3(0))

r(’,,l(t) ri(?)

o)
167*

H,, (650 £.5,) = &, 25,00, 700) exp[— ik{rao]+ Ir;'z(t)|)]

(2.3-100)

is the time-variant, space-variant, complex frequency response of the ocean at frequency f hertz,

PR ACK O EXA R AONR O ACRAG) (2.3-101)

is the scattering function of the discrete point scatterer in meters, the angles of incidence 6,(#) and
¥, (¢) are given by (2.3-85) and (2.3-86), respectively, the angles of scatter 6,,(f) and y;,(f) are
given by (2.3-91) and (2.3-92), respectively, a(f) is the real, frequency-dependent, attenuation
coefficient in nepers per meter, 'r{,_l(t)| is given by (2.3-78), Il‘l'_’z(t)l is given by (2.3-71), the real

wavenumber k in radians per meter is given by (2.1-5), and the time delay 7 in seconds is given by
(2.3-76).

Let us next relate the scattering function, the differential scattering cross section, and target
strength of the discrete point scatterer. The target strength (TS) is defined as follows [6]:
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A

ref

o, f.nl(0),n"(t :
TS = 1010g,0|: AOAAONH ))]dB reA,, 12t +7, (2.3-102)

where [5, 6]

. 2t 4T,

[r(O1 L, r;'m} HEEROEAON

oy 74 A '
(f nO'(t) . 2(0) - ria ‘le: avg, (l"([)) (47[)

(2.3-103)

is the differential scattering cross section with units of squared meters, I,,, (r/(s)) and I, (r;(?))
are the time-average, incident and scattered intensities, respectively, with units of watts per squared

o4

meter, g,( faig, ()7, 2(t)) is the scattering function of the discrete point scatterer with units of

" meters, A, is a reference cross-sectional area commonly chosen to be equal to 1 m?, and the time
delay 7 in seconds is given by (2.3-76).

Example 2.3-1 Simulation of Sections 2.1 and 2.2

In this example we will show that the exact results derived in this section will reduce to the
exact results derived in Sections 2.1 and 2.2 when appropriate values are used for the various
parameters. Let us begin with the problem discussed in Section 2.2.

Simulation of Section 2.2

In Section 2.2, only the discrete point scatterer was in motion with constant velocity vector V,.
In order to simulate this problem, we set the constant velocity vector of the transmitter V,=0 and
the constant velocity vector of the receiver V,=0. As a result [see (2.3-9)],

V=V, (2.3-104)

Vio=Vio|=| V] (2.3-105)
=V,

V. =0 (2.3-106)

since V,, is undefined when V,=0 [see (2.3-22)], and
V,=|Vy|=0. (2.3-107)

Substituting (2.3-105) into (2.3-47), (2.3-104) into (2.3-48). and repeating (2.3-49) for
convenience yields
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, :
A=1—(5) , (2.3-108)

C
B=2r, -'%ﬂ (2.3-109)
and
C=Trj,. (2.3-110)

Equations (2.3-108) through (2.3-110) are identical with (2.2-33) through (2.2-35). Therefore, with
the use of (2.3-108) through (2.3-110), the exact solution for the constant value of range |r(',,,| given

by (2.3-46) reduces to the exact solution given by (2.2-32). Recall that |r{,_1| is the constant value of

range between the point source and the discrete point scatterer when the transmitted acoustic field is
first incident upon the discrete point scatterer at time instant ¢’ after motion begins at time instant
t, where t'>1¢,.

Substituting V, =0 and (2.3-104) through (2.3-107) into (2.3-61) through (2.3-65) yields

A=-2r,(@,* V), (2.3-111)
A,=V?, (2.3-112)
A,=0, o (2.3-113)
A,=0, (2.3-114)

and
A,=0. (2.3-115)

Substituting (2.3-113) through (2.3-115) into (2.3-58) and (2.3-59), and repeating (2.3-60) for
convenience yields '

#,=1, (2.3-116)

8,=0, (2.3-117)
and

o= A (A + A AL + 12, (2.3-118)

Substituting (2.3-116) through (2.3-118) into (2.3-57) yields

r,’,’zl = JAL(AYY + AAY + 7L (2.3-119)

and upon substituting (2.3-66), (2.3-111), and (2.3-112) into (2.3-119), we finally obtain
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'rl.2

’

= Irl.Z

) (2.3-120)

where 'r,"z is given by (2.2-40). Therefore, the exact solution for the constant value of range |r/,

given by (2.3-57) reduces to the exact solution for the constant value of range

40). Recall that both |r[,| and Ir,’ 2' are the constant values of range between the discrete point

scatterer and the receiver when the scattered acoustic field is first incident upon the receiver at time
instant ¢ after motion begins at time instant ¢, where > >1¢, .
Substituting (2.3-111) through (2.3-115) into (2.3-72) through (2.3-74) yields

?
L,

given by (2.2-

2
;4=1—(ﬁ), (2.3-121)
C
2 n., eV ,
2 =2 pr-2y, B2 N (23-122)
C ’ C
and
C() = V(ALY =2r,(A,* VDAt + 1), (2.3-123)

where At is given by (2.3-75). And because of (2.3-120), At given by (2.3-75) is identical to At
given by (2.2-48) since the time delay 7 given by (2.3-76) is identical to the time delay 7 given by
(2.2-49). As a result, (2.3-121) through (2.3-123) are identical with (2.2-45) through (2.2-47).
Therefore, with the use of (2.3-121) through (2.3-123), the exact solution for the time-varying range
rl’,’z(t)| given by (2.3-71) reduces to the exact solution for the time-varying range lr,’_z(t)l given by
(2.2-44), that is,

ri(0)]=|r0)|- (2.3-124)

With the use of (2.3-124), the exact solution for the time-varying range r{,_l(t)l given by (2.3-

78) reduces to the exact solution given by (2.2-51). With the use of (2.3-104), the exact solution for
the time-varying unit vector ng,(f) given by (2.3-82) reduces to the exact solution given by (2.2-

55). With the use of V,=0, (2.3-104), (2.3-106), and (2.3-124), the exact solution for the time-
varying unit vector 7,5(#) given by (2.3-88) reduces to the exact solution for the time-varying unit
vector 71;,(f) given by (2.2-61), that is,

TMOES MO (2.3-125)
And finally, substituting V,=0 and (2.3-106) into (2.3-95) yields

r/(f)=r,. (2.3-126)

Let us next consider the problem discussed in Section 2.1.
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Simulation of Section 2.1

In Section 2.1 none of the platforms were in motion. In order to simulate this problem, all we
need to do for the most part is to set V,=0 and V,=0 into the equations already derived in this
example.

Substituting V=0 into (2.3-108) and V,=0 into (2.3-109), and repeating (2.3-110) for
convenience yields

A=1, (2.3-127)
B=0, (23128
and |
C=r,. (2.3-129)

Substituting (2.3-127) through (2.3-129) into (2.3-46) yields

= |Fouf = 70, (2.3-130)

’
Toi

as the constant value of range between the point source and the discrete point scatterer [see (2.1-
26)]. '

Substituting V,=0 into (2.3-111) and V,=0 into (2.3-112), and repeating (2.3-113) through
- (2.3-115) for convenience yields

A=0, (2.3-131)

A,=0, (2.3-132)

A,=0, | (2.3-133)

A,=0, (2.3-134)
and

A;=0. (2.3-135)

Substituting (2.3-131) and (2.3-132) into (2.3-118) and (2.3-119), and repeating (2.3-116) and
(2.3-117) for convenience yields ‘

A,=1, (2.3-136)
8,=0, | (2.3-137)
Co="rn, (2.3-138)

and
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ri|=[r|= 7. (2.3-139)
as the constant value of range between the discrete point scatterer and the receiver [see (2.1-27)].
Note that with the use of (2.3-130) and (2.3-139), the time delay 7 given by (2.3-76) reduces to the
time delay 7 given by (2.1-25).

Substituting V,=0 and V,= 0 into (2.3-121) through (2.3-123) yields

A=1, (2.3-140)
8(1)=0, (23-141)
and
e(n=rk,. (2.3-142)

Substituting (2.3-140) through (2.3-142) into (2.3-71) yields
}r{.’z(t)|= |rl.2| =T, (2.3-143)

Equation (2.3-143) indicates that the range between the discrete point scatterer and the receiver does
not change value as a function of time - it is equal to the constant value r,, - which makes physical

sense since none of the platforms are in motion.

When none of the platforms are in motion, the time delay between the transmitter, discrete
point scatterer, and receiver is constant, that is, At = 7, where 7 is given by (2.3-76). Therefore, with
the use of (2.3-76), (2.3-130), and (2.3-139),

At=T=M+M. (2.3-144)
c c

Substituting (2.3-143) and (2.3-144) into (2.3-78) yields
,r(;.l(t)l = 'rﬁ,l’ = Tor ' (2.3-145)

Equation (2.3-145) indicates that the range between the transmitter and the discrete point scatterer
does not change value as a function of time - it is equal to the constant value r,, - which makes

physical sense since none of the platforms are in motion.
Substituting V,= 0 into (2.3-104) yields

V,,=0. (2.3-146)

With the use of (2.3-145) and (2.3-146), the exact solution for the time-varying unit vector g, (1)
given by (2.3-82) reduces to the exact solution for the constant unit vector r‘zo‘1 given by (2.1-18),
that is,

Ay ~ l‘0.1
A0 = g, = ] (2.3-147)

r().ll
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And finally, with the use of V,=0, (2.3-106), (2.3-143), and (2.3-146), the exact solution for the
time-varying unit vector 71,’,(f) given by (2.3-88) reduces to the exact solution for the. constant unit
vector 7,, given by (2.1-19), that is,

- A LYP
nl,.’z(t) =h,= |

(2.3-148)
rl,:’

Example 2.3-2 Monostatic Scattering Geometry

In this example all three platforms are in motion with constant velocity vectors V,, V,, and

V,, but the scattering geometry is monostatic versus bistatic. For a monostatic (backscatter)
scattering geometry, both the transmitter and receiver are located at the same position, that is,

I,=1I,. (2.3-149)
Substituting (2.3-149) into (2.1-14) yields |
| I,==Tyy (2.3-150)
where r,, is given by (2.1-6). Therefore,
N2=To, ‘ (2.3-151y
and
iy, =—Ty,. (2.3-152)

And since both the transmitter and receiver are on the same platform,

V,=V,, | (2.3-153)
V,=V, (2.3-154)

and
Ay, = . (2.3-155)

Substituting (2.3-153) through (2.3-155) into (2.3-22) yields the following expression for the
velocity vector of the receiver relative to the velocity vector of the discrete point scatterer in the
direction of the velocity vector of the receiver #i,, = fi,, :

V,, = Vo= Gy, Vi, = Vo= ViGiy, @ )]y, (2.3-156)

The time variant, space variant, complex frequency rcsponsc of the occan for a monostatic
scattering geometry with all three platforms in motion is given by (2.3-100) in conjunction with
(2.3-149) through (2.3-156). '
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Example 2.3-3 Syntiletic Aperture Sonar (SAS)

In this example we will consider a bistatic scattering geometry consistent with a synthetic
aperture sonar (SAS) trying to image a nonmoving target on the ocean bottom. Although the
transmitter and receiver are on the same platform, they are not located at the same position, that is,

r, %, (2.3-157)

However, (2.3-153) through (2.3-156) are applicable in this example.
As was mentioned, the discrete point scatterer (target) is not in motion. Therefore,

V,=0, " (2.3-158)
and, as a result, the relative velocity vector V, , given by (2.3-9) is undefined. Therefore,
V=0 (2.3-159)
and
Vio=|Vio|=0. (2.3-160)

And, upon substituting (2.3-158) into (2.3-156), we obtain

v, =V, | (2.3-161)
and
Var= Vo =| Vo (2.3-162)
=V,.

Let us solve for the constant value of range Ir(’)_ll next. Substituting (2.3-160) into (2.3-47)
and (2.3-159) into (2.3-48), and repeating (2.3-49) for convenience yields

A=1, (2.3-163)
B=0, (2.3-164)
and
C=r.,. (2.3-165)

Substituting (2.3-163) through (2.3-165) into (2.3-46) yields

’
l.0,1

=1, (2.3-166)
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as the constant value of range between the point source and the discrete point scatterer when the
transmitted acoustic field is first incident upon the discrete point scatterer at time instant ¢ after
motion begins at time instant ¢, where ¢’ > t,. The range r,, is given by (2.1-26).

Now let us solve for the constant value of range lrl”2| Substituting (2.3-153) and (2.3-159)

into (2.3-61); (2.3-153), (2.3-154), and (2.3-159) into (2.3-62); (2.3-161) into (2.3-63); (2.3-162)
into (2.3-64); (2.3-153), (2.3-154), (2.3-159), and (2.3-161) into (2.3-65); and (2.3-166) into (2.3-
66) yields

A =21, (7,0 V), (2.3-167)
A=V, (2.3-168)
A;=2n,(n,0 V), (2.3-169)
A=V}, (2.3-170)
Ag=2V2, (2.3-171)
and
At'=t-t = —rg—‘— U>t,. (23-172)

With the use of (2.3-57) and substituting (2.3-170) into (2.3-58); (2.3-169), (2.3-171), and (2.3-
172) into (2.3-59); and (2.3-167), (2.3-168), and (2.3-172) into (2.3-60), we obtain

s Bt 1/ Bl +44,6,
2= , (2.3-173)
: 24,
where
2
= 1—V—‘§, (2.3-174)
C
o 2
&,=2r, (hy* Vo) +2r,, V—‘; (2.3-175)
C
and
2 N
Co= ré,z’;+2r01n2911'1.—°)+r122. (2.3-176)
C v C *

The ranges r,, and r,, are given by (2.1-26) and (2.1-27). respectively. The solution given by (2.3-

173) is the constant value of range between the discrete point scatterer and the receiver when the
scattered acoustic field is first incident upon the receiver at time instant ¢ after motion begins at time
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instant ¢, where r>17 >t . The decision to use either the plus or minus sign in (2.3-173) is
dictated by the fact that range must be positive.
Let us solve for the time-varying range "'1'.’2(’)‘ next. Substituting (2.3-168), (2.3-170), and

(2.3-171) into (2.3-72); (2.3-167) through (2.3-169) and (2.3-171) into (2.3-73); and (2.3-167)
and (2.3-168) into (2.3-74) yields

A=1, (2.3-177)
B(1=0, (2.3-178)
and
(1) =Vi(AD +21,,(ii,,® V)AL + 17, (2.3-179)
where [see (2.3-75) and (2.3-76)]
At=t-1t , 12t +7, (2.3-180)
and
r/ rll
r=l—~°-"—+—i2—‘ (2.3-181)
C C

is the fime delay in seconds (the amount of time it takes for the transmitted acoustic signal to begin
to appear at the receiver after motion begins at time instant z,,) where the constant values of range

r,,| and (r,| are given by (2.3-166) and (2.3-173), respectively. Substituting (2.3-177) through
(2.3-179) into (2.3-71) yields

rl'"z(t)l =[r%y + 21, (A0 V)AL + VOZ(At)Z]'/ Lozt 4T (2.3-182)

Now let us solve for the time-varying range ‘r(’m(t)l. With the use of (2.3-78), we can write
that

[0, (0] = car-

A0 TS (2.3-183)

where At is given by (2.3-180), r,'_’z(t)| is given by (2.3-182), and 7 is given by (2.3-181).

Let us solve for the time-varying unit vector 7g,(¢) next. If we substitute (2.3-159) into (2.3-
82), then
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D ¥
A ()=, 121 +T. (2.3-184)

Ir5,0)

Equation (2.3-184) does not make physical sense because we need the time-varying vector rg,(¢) in
~ the numerator and not the constant vector r,. Therefore, we need to derive an equation for rj (7).
Before we begin the derivation, let us note that although (2.3-184) does not make physical sense, if
we substitute (2.3-159) into (2.3-17), then

TS o (2.3-185)

and, as a result,

0| = [0 = 7o | (2.3-186)
Equation (2.3-186) does make physical sense and it agrees with (2.3-166).
We begin the derivation of the equation for the time-varying vector rg,(f) by substituting
(2.1-6) into (2.3-185) yielding
Fo,=I—I,. (2.3-187)
We then generalize (2.3-187) as follows:
), ()=R(t-T)-Ry(t—-1), 121, +T, , (2.3-188)
where 2,(?) is the time-varying position vector from the origin to the transmitter given by (2.3-4),

and 2,(?) is the time-varying position vector from the origin to the discrete point scatterer given by
(2.3-5). Substituting (2.3-4), (2.3-5), and (2.3-158) into (2.3-188) yields

ro()=ry—[t=(,+7)V,  t2t,+7, (2.3-189)

where r, is given by (2.1-6) and 7 is given by (2.3-181). Note that if we evaluate (2.3-189) at
t=t +7,then

ro,(t, +7)=rg,, (2.3-190)

where ry, is given by (2.3-185). Therefore, |

Ir(’)_l(tm + r)| =

’
Lo

, (2.3-191)

where [rg,| is given by either (2.3-186) or (2.3-166). Equation (2.3-191) agrees with the general
result given by (2.3-80).
As aresult of the above analysis, the time-varying unit vector 7,,(?) is given by
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N ro, ()
ng, () =—-, t2t +7, (2.3-192)
5.0

where rg,(¢) is given by (2.3-189) and 7 is given by (2.3-181). And by referring to (2.3-85) and
(2.3-86), we can write that

G (D =cos™ wy (), t2t +7T, (2.3-193)
and
ot
W (0= tan"(%} 121 +7, (2.3-194)
01

where uj (1), vg, (1), and wy,(¢) are the dimensionless, time-varying direction cosines with respect

tothe X, Y,and Z axes, respectively, associated with the time-varying unit vector 7i,(f) given by

(2.3-192), and 7 is given by (2.3-181). Equations (2.3-193) and (2.3-194) are the angles of
incidence at the discrete point scatterer that are to be used to evaluate the scattering function of the
discrete point scatterer given by (2.3-101). o
Let us solve for the time-varying unit vector 7,(f) next. If we substitute (2.3-153), (2.3-159),
and (2.3-161) into (2.3-88), then

oo TialD)
n(0) = ——7, t2t +7, (2.3-195)
ry ()|
where
r(=r,+AtV,,  121,+7, (2.3-196)

r,, is given by (2.1-14), At is given by (2.3-180), and 7 is given by (2.3-181). Note that (2.3-196)

can be obtained by substituting (2.3-13), (2.3-25), (2.3-75), (2.3-153), (2.3-159), and (2.3-161) into
(2.3-28). And by referring to (2.3-91) and (2.3-92), we can write that

6D =cos WD), 121,47, (2.3-197)

and
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vi5(0)

Y= tan"( 7 (t)j’ t21t,+7, (2.3-198)
12

where u,(1), v;5(£), and w/(#) are the dimensionless, time-varying direction cosines with respect
tothe X, Y, and Z axes, respectively, associated with the time-varying unit vector 7,,(f) given by
(2.3-195), and 7 is given by (2.3-181). Equations (2.3-197) and (2.3-198) are the angles of scatter
at the receiver that are to be used to evaluate the scattering function of the discrete point scatterer
given by (2.3-101).

Finally, let us solve for the time-varying position vector r; () from the origin to the receiver.
If we substitute (2.3-153) and (2.3-161) into (2.3-95), then

r, ()=r,+AtV,, tt, +7, (2.3-199)

where At is given by (2.3-180) and 7 is given by (2.3-181).

In order to fully appreciate the importance of the results contained in this SAS example, keep
in mind that they are based on the exact time-varying ranges between the transmitter and discrete
point scatterer, and between the discrete point scatterer and receiver, and 2) the exact time-varying
angles of incidence at the discrete point scatterer, and the exact time-varying angles of scatter at the
receiver that are used to evaluate the frequency dependent scattering function of the discrete point
scatterer. In contrast, Bonnifant [8], for example, 1) initially ignores the height of the
transmit/receive platform above the ocean bottom when computing ranges, 2) he assumes that the
target’s reflectivity is constant - not a function of frequency and angles, and 3) that the
transmit/receive platform is stationary during signal transmission and reception - the common
“stop and hop” assumption that he later attempts to correct for with an approximate phase factor
correction. We have made no such assumptions in this example and, as a result, no corrections are
necessary.
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3  Summary

The complex frequency response of the ocean was derived for the following three different
bistatic scattering problems: 1) no motion, 2) only the discrete point scatterer is in motion, and 3) all
three platforms (the transmitter, discrete point scatterer, and receiver) are in motion. The propagation
of the small-amplitude acoustic signals in the ocean involved in the bistatic scattering problems was
treated as transmission through a linear, time-variant, space-variant filter.

Scatter from a discrete point scatterer was modeled via the scattering function, which is a
complex function (magnitude and phase) and is, in general, a function of frequency, the direction of
wave propagation from the source to the scatterer, and the direction of wave propagation from the
scatterer to the receiver. In addition to the scattering function, frequency-dependent attenuation was
taken into account in order to model the propagation of sound from transmitter to discrete point
scatterer, and from discrete point scatterer to receiver.

The speed of sound and ambient density of the ocean were treated as constants. Therefore,
sound rays will travel in straight lines. We only concerned ourselves with solving for the direct ray
path between transmitter and discrete point scatterer, and from discrete point scatterer to receiver. As
aresult, the three platforms were treated as being in an unbounded, homogeneous ocean medium.
However, sound propagation between the transmitter and the ocean surface and bottom, and from
the ocean surface and bottom to the receiver can be handled in the same way as was done for the
discrete point scatterer.

Section 2.1 was devoted to the first bistatic scattering problem, which involves no motion - the
transmitter, discrete point scatterer, and receiver are not in motion. The exact solutions for the
angles of incidence at the discrete point scatterer and the angles of scatter at the receiver were
derived. An example was worked out at the end of Section 2.1 showing how the general bistatic
scattering results reduced for a monostatic (backscatter) scattering geometry for the no motion
case.

- Section 2.2 was devoted to the second bistatic scattering problem when only the discrete point
scatterer is in motion. Motion was allowed to start at an arbitrary time instant 7, seconds as

opposed to zero seconds. Two new major results were presented in Section 2.2: 1) the exact time-
varying ranges between the transmitter and discrete point scatterer, and between the discrete point
scatterer and receiver were derived, and 2) the exact time-varying angles of incidence at the discrete
point scatterer, and the exact time-varying angles of scatter at the receiver were also derived. An
example was worked out at the end of Section 2.2 showing how the general bistatic scattering
results reduced for a monostatic (backscatter) scattering geometry for the case when only the
discrete point scatterer is in motion.

Section 2.3 was devoted to the third bistatic scattering problem when all three platforms are in
motion. Motion was allowed to start at an arbitrary time instant ¢, seconds as opposed to zero

seconds. Two new major results were presented in Section 2.3: 1) the exact time-varying ranges
between the transmitter and discrete point scatterer, and between the discrete point scatterer and
receiver were derived, and 2) the exact time-varying angles of incidence at the discrete point
scatterer, and the exact time-varying angles of scatter at the receiver were also derived. Three
examples were worked out at the end of Section 2.3. The first example showed that the exact results
derived in Section 2.3 reduced to the exact results derived in Sections 2.1 and 2.2 when appropriate
values were used for the various parameters. This is a very important example because it validates
the correctness of the general solution derived in Section 2.3. The second example showed how the
general bistatic scattering results reduced for a monostatic (backscatter) scattering geometry for the
case when all three platforms are in motion. The third example showed how the general bistatic
scattering results can be applied to a synthetic aperture sonar (SAS) system trying to image a
nonmoving target on the ocean bottom without having to make several common simplifying
assumptions.

inally, it is important to note that for problems involving motion, the solutions for the exact
time-varying ranges between the transmitter and discrete point scatterer, and between the discrete
point scatterer and receiver derived in this report are also valid in an inhomogeneous ocean where
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the speed of sound and ambient density are functions of position since solving for a range
represents a problem in mechanics not wave propagation. However, travel times and angles of
incidence and scatter are different in an inhomogeneous ocean compared to a homogeneous ocean
because of the complicated trajectories of sound rays in an inhomogeneous ocean.
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